
This book is licensed under a Creative Commons Attribution 3.0 License

7. Syntax analysis
Learning objectives:

• syntax is the frame that carries the semantics of a language

• syntax analysis

• syntax tree

• top-down parser

• syntax analysis of parenthesis-free expressions by counting

• syntax analysis by recursive descent

• recursive coroutines

The role of syntax analysis

The syntax of a language is the skeleton that carries the semantics. Therefore, we will try to get as much work as  

possible done as a side effect of syntax analysis; for example, compiling a program (i.e. translating it from one  

language into another) is a mainly semantic task. However, a good language and compiler are designed in such a  

way that  syntax analysis  determines  where  to start  with the translation process.  Many processes  in computer  

science are syntax-driven in this sense. Hence syntax analysis is important. In this section we derive algorithms for 

syntax analysis  directly from syntax diagrams.  These algorithms reflect  the recursive  nature  of  the underlying 

grammars. A program for syntax analysis is called a parser.

The composition of a sentence can be represented by a syntax tree or parse tree. The root of the tree is the start 

symbol; the leaves represent the sentence to be recognized. The tree describes how a syntactically correct sentence  

can be derived from the start symbol by applying the productions of the underlying grammar (Exhibit 7.1).

Exhibit 7.1: The unique parse tree for  # · # + # 

Top-down parsers begin with the start symbol as the goal of the analysis. In our example, "search for an E". The 

production for E tells us that we obtain an E if we find a sequence of T's separated by + or –. Hence we look for T's.  

The structure tree of an expression grows in this way as a sequence of goals from top (the root) to bottom (the  

leaves).  While satisfying the goals (nonterminal symbols) the parser reads suitable symbols (terminal symbols) 

from left to right. In many practical cases a parser needs no backtrack. No backtracking is required if the current  

Algorithms and Data Structures 62  A Global Text

# á # + #

F F F

T T

E

http://creativecommons.org/licenses/by/3.0/


7. Syntax analysis

input symbol and the nonterminal to be expanded determine uniquely the production to be applied. A recursive-

descent parser uses a set of recursive procedures to recognize its input with no backtracking.

Bottom-up  methods build the structure tree from the leaves to the root.  The text  is  reduced until  the start 

symbol is obtained.

Syntax analysis of parenthesis-free expressions by counting

Syntax analysis can be very simple. Arithmetic expressions in Polish notation are analyzed by counting. For sake 

of simplicity we assume that each operand in an arithmetic expression is denoted by the single character #. In order 

to decide whether a given string c1 c2 … cn is a correct expression in postfix notation, we form an integer sequence t 0, 

t1, … , tn according to the following rule:

t0 = 0.

ti+1 = ti + 1, if i > 0 and ci+1 is an operand.

ti+1 = ti – 1, if i > 0 and ci+1 is an operator.

Example of a correct expression:

# # # # – – + # ·

c1  c2 c3 c4 c5 c6 c7 c8 c9

t0  t1 t2 t3 t4 t5 t6 t7 t8 t9

0 1 2 3 4 3 2 1 2 1

Example of an incorrect expression (one operator is missing):

# #   #     +     ·   #  #    /

c1 c2   c3    c4  c5  c6  c7 c8

t0 t1  t2  t3  t4   t5  t6  t7 t8

0    1     2   3  2    1   2   3  2

Theorem: The string c1 c2 … cn over the alphabet A = { # , + , – , · , / } is a syntactically correct expression in  

postfix notation if and only if the associated integer sequence t0, t1, … , tn satisfies the following conditions:

ti > 0 for 1 ≤ i < n,  tn = 1.

Proof  ⇒ : Let c1 c2 … cn be a correct arithmetic expression in postfix notation. We prove by induction on the 

length n of the string that the corresponding integer sequence satisfies the conditions.

Base of induction: For n = 1 the only correct postfix expression is c 1 = #, and the sequence t0 = 0, t1 = 1 has the 

desired properties.

Induction hypothesis: The theorem is correct for all expressions of length ≤ m.

Induction step: Consider a correct postfix expression S of length m + 1 > 1 over the given alphabet A. Let s = (s i) 0 ≤ i 

≤ m+1 be the integer sequence associated with S. Then S is of the form S = T U Op, where 'Op' is an operator and T  

and U are correct postfix expressions of length j ≤ m and length k ≤ m, j + k = m. Let t = (t i) 0 ≤ I ≤ j and u = (ui) 0 ≤ i ≤ k 

be the integer sequences associated with T and U. We apply the induction hypothesis to T and U. The sequence s is  

composed from t and u as follows:

63



This book is licensed under a Creative Commons Attribution 3.0 License

s = s0 , s1 , s2 , … , sj , sj + 1 , sj + 2 , … , sm ,    sm+1

 t0 , t1 , t2 , … , tj , u1 + 1 , u2 + 1 , … , uk + 1 , 1

 0, … ,1, … ,2,1

Since t ends with 1, we add 1 to each element in u, and the subsequence therefore ends with u k + 1 = 2. Finally, 

the operator 'Op' decreases this element by 1, and s therefore ends with sm+1 = 1. Since ti > 0 for 1 ≤ i < j and ui > 0 for 

1 ≤i < k, we obtain that si > 0 for 1 ≤ i < k + 1. Hence s has the desired properties, and we have proved one direction 

of the theorem.

Proof ⇐ : We prove by induction on the length n that a string c1 c2 … cn over A is a correct arithmetic expression 

in postfix notation if the associated integer sequence satisfies the conditions stated in the theorem.

Base of induction: For n = 1 the only sequence is t0 = 0, t1 = 1. It follows from the definition of the sequence that 

c1 = #, which is a correct arithmetic expression in postfix notation.

Induction hypothesis: The theorem is correct for all expressions of length ≤ m.

Induction step: Let s = (si) 0 ≤ i ≤ m+1 be the integer sequence associated with a string S = c1 c2 … cm+1 of length m + 1 

> 1 over the given alphabet A which satisfies the conditions stated in the theorem. Let j < m + 1 be the largest index  

with sj = 1. Since s1 = 1 such an index j exists. Consider the substrings T = c1 c2 … cj and U = cj cj+1 … cm. The integer 

sequences (si)  0 ≤  i ≤ j  and (si – 1)  j ≤  i ≤ m associated with T and U both satisfy the conditions stated in the theorem. 

Hence we can apply the induction hypothesis and obtain that both T and U are correct postfix expressions. From 

the definition of the integer sequence we obtain that cm+1 is an operand 'Op'.  Since T and U are correct postfix 

expressions, S = T U Op is also a correct postfix expression, and the theorem is proved.

A similar  proof  shows that  the  syntactic  structure  of  a  postfix  expression  is  unique.  The  integer  sequence 

associated with a postfix expression is of practical importance: The sequence describes the depth of the stack during  

evaluation of the expression, and the largest number in the sequence is therefore the maximum number of storage  

cells needed.

Analysis by recursive descent

We return to the syntax of the simple arithmetic expressions of chapter 6 in the section “Example: syntax of  

simple expressions” (Exhibit   7.2). Using the expression   # · (# – #) as an example, we show how these syntax  

diagrams are  used to analyze  any expressions  by  means of  a  technique  called  recursive-descent  parsing.  The 

progress of the analysis depends on the current state and the next symbol to be read: a lookahead of exactly one  

symbol suffices to avoid backtracking. In  Exhibit 7.3 we move one step to the right after each symbol has been 

recognized, and we move vertically to step up or down in the recursion.

Algorithms and Data Structures 64  A Global Text

http://creativecommons.org/licenses/by/3.0/


7. Syntax analysis

Exhibit  7.2: Standard syntax for simple arithmetic expressions (graphic does not match)

Exhibit 7.3: Trace of syntax analysis algorithm parsing the expression  # · ( # – # ).

Turning syntax diagrams into a parser

In a programming language that allows recursion the three syntax diagrams for simple arithmetic expressions 

can be translated directly into procedures. A nonterminal symbol corresponds to a procedure call, a loop in the 

diagram generates a while loop, and a selection is translated into an if statement. When a procedure wants to  

delegate a goal it calls another, in cyclic order: E calls T calls F calls E, and so on. Procedures implementing such a 

recursive control structure are often called recursive coroutines.

65



This book is licensed under a Creative Commons Attribution 3.0 License

The procedures that follow must be embedded into a program that provides the variable 'ch' and the procedures 

'read' and 'error'. We assume that the procedure 'error' prints an error message and terminates the program. In a  

more sophisticated implementation, 'error' would return a message to the calling procedure (e.g. 'factor'). Then this  

error message is returned up the ladder of all recursive procedure calls active at the moment.

Before the first call of the procedure 'expression', a character has to be read into 'ch'. Furthermore, we assume  

that a correct expression is terminated by a period:

…

read(ch);  expression;  if  ch ≠ '.'  then  error;

…

Exercises

1. Design recursive  algorithms to translate  the simple  arithmetic  expressions of  chapter 6 in  the section 

“Example: syntax of a simple expressions” into corresponding prefix and postfix expressions as defined in 

chapter  6  in  the  section  “Parenthesis-free  notation  for  arithmetic  expressions”.  Same  for  the  inverse 

translations.

2. Using syntax diagrams and EBNF define a language of 'correctly nested parentheses expressions'. You have 

a bit of freedom (how much?) in defining exactly what is correctly nested and what is not, but obviously  

your definition must include expressions such as (), ((())), (()(())), and must exclude strings such as (, )(, ())

().

3. Design two parsing algorithms for your class of correctly nested parentheses expressions: one that works by 

counting, the other through recursive descent. 

Algorithms and Data Structures 66  A Global Text

http://creativecommons.org/licenses/by/3.0/

